Abstract

Atmospheric methane trends over the last few years have been increasing at a rate of 7-12 parts per billion (ppb) per year after brief a pause in the first decade of this century. The reasons for the pause and subsequent increase remains unclear. Thus, there is a critical need for additional, precise and accurate methane observations to understand the natural and anthropogenic processes that drive the trends in atmospheric methane and to constrain its sources, and sinks. At NASA Goddard Space Flight Center (GSFC), in collaboration with Freedom Photonics Inc., we have been developing a lidar to measure atmospheric methane using Integrated Path Differential Absorption (IPDA) from an airborne platform as a precursor to a future space mission. In this paper we present the design of a laser transmitter operating at ~1651 nm based on a newly developed Distributed Bragg Grating (DBR) seed laser and an Optical parametric oscillator (OPO). The DBR is rapidly step-tuned over the methane absorption at several discrete wavelengths. This multi-wavelength approach enables us to sample the entire methane lineshape and reduce systematic errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.