Abstract

A new large radius imaging plate diffraction camera for high-resolution and high-throughput synchrotron x-ray powder diffraction by means of multiple exposures has been developed for an insertion device beamline of SPring-8, Japan. The new imaging plate camera consists of a large radius cylindrical shape imaging plate cassette that is 400 mm in length and 954.9 mm in cylinder radius. The cassette is designed to be mounted on the 2 theta arm of the diffractometer of BL15XU in SPring-8. One imaging plate covers 24 degrees and several times of exposure changing the 2 theta-setting angle is necessary to obtain whole powder diffraction data up to a high angle region. One pixel of the imaging plate corresponds to 0.003 degrees in 2 theta when the readout pixel size is 50 microm squares. Separately collected data are translated to 2 theta-intensity format and are connected by comparing the peak and background intensity included in the overlapped area. The exposure time is less than 120 s for most samples and the readout time is about 3 min; thus, the total measurement time for one powder diffraction pattern is less than 20 min. The measurement time is the same order as the continuous 2 theta-scanning method of the third generation synchrotron powder diffractometer. The angular resolution of the new imaging plate camera was evaluated by comparing the full width at half maximum of the 111 reflection of NBS-Si. The observed angular resolution is not so high as a powder diffractometer with a Si or a Ge analyzer monochromator in the third generation synchrotron facility but higher than a powder diffractometer with a Ge analyzer monochromator at a bending magnet beamline of the second generation synchrotron. The Rietveld analysis of NBS-CeO2 was successfully carried out with the data taken by the new imaging plate camera.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.