Abstract
20-inch Large area photomultiplier tube based on microchannel plate (MCP-PMT) is newly developed in China. It is widely used in high energy detection experiments such as Jiangmen Underground Neutrino Observatory (JUNO), China JinPing underground Laboratory (CJPL) and Large High Altitude Air Shower Observatory (LHAASO). To overcome the poor time performance of the existing MCP-PMT, a new design of large area MCP-PMT is proposed in this paper. Three-dimensional models are developed in CST Studio Suite to validate its feasibility. Effects of the size and bias voltage of the focusing electrodes and MCP configuration on the collection efficiency (CE) and time performance are studied in detail using the finite integral technique and Monte Carlo method. Based on the simulation results, the optimized operating and geometry parameters are chosen. Results show that the mean ratio of photoelectrons landing on the MCP active area is 97.5%. The acceptance fraction of the impinging photoelectrons is close to 100% due to the emission of multiple secondary electrons when hitting the MCP top surface. The mean transit time spread (TTS) of the photoelectrons from the photocathode is 1.48 ns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.