Abstract

The aim of this paper is to introduce a methodology to solve a large-scale mixed-integer nonlinear program (MINLP) integrating the two main optimization problems appearing in the oil refining industry: refinery planning and crude-oil operations scheduling. The proposed approach consists of using Lagrangian decomposition to efficiently integrate both problems. The main advantage of this technique is to solve each problem separately. A new hybrid dual problem is introduced to update the Lagrange multipliers. It uses the classical concepts of cutting planes, subgradient, and boxstep. The proposed approach is compared to a basic sequential approach and to standard MINLP solvers. The results obtained on a case study and a larger refinery problem show that the new Lagrangian decomposition algorithm is more robust than the other approaches and produces better solutions in reasonable times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.