Abstract

A novel multilattice kinetic Monte Carlo algorithm is developed for heteroepitactical growth of a hexagonal lattice material (C60) on an oblique lattice material (pentacene). This algorithm captures the behavior of single molecule and small clusters of C60 molecules diffusing, clustering, and reorganizing as monolayers on the surface and switching lattices depending on their local environment. An extensive catalog of jump rates and energy barriers created from molecular dynamics simulations and molecular mechanics is used as the sole input to the method in order to follow the evolution of C60 growth on pentacene for time scales approaching a millisecond that are unattainable using molecular dynamics alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.