Abstract
In this paper we introduce a new kind of Lax-Oleinik type operator with parameters associated with positive definite Lagrangian systems for both the time-periodic case and the time-independent case. On one hand, the new family of Lax-Oleinik type operators with an arbitrary $u\in C(M,\mathbb{R}^1)$ as initial condition converges to a backward weak KAM solution in the time-periodic case, while it was shown by Fathi and Mather that there is no such convergence of the Lax-Oleinik semigroup. On the other hand, the new family of Lax-Oleinik type operators with an arbitrary $u\in C(M,\mathbb{R}^1)$ as initial condition converges to a backward weak KAM solution faster than the Lax-Oleinik semigroup in the time-independent case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.