Abstract
<p style='text-indent:20px;'>In this paper, we introduce a bi-variate case of a new kind of <inline-formula><tex-math id="M1">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>-Bernstein-Kantorovich type operator with shifted knots defined by Rahman et al. [<xref ref-type="bibr" rid="b31">31</xref>]. The rate of convergence of the bi-variate operators is obtained in terms of the complete and partial moduli of continuity. Next, we give an error estimate in the approximation of a function in the Lipschitz class and establish a Voronovskaja type theorem. Also, we define the associated GBS(Generalized Boolean Sum) operators and study the degree of approximation of Bögel continuous and Bögel differentiable functions by these operators with the aid of the mixed modulus of smoothness. Finally, we show the rate of convergence of the bi-variate operators and their GBS case for certain functions by illustrative graphics and tables using MATLAB algorithms.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.