Abstract

Copy-move forgery is one of the most common types of image forgeries, where a region from one part of an image is copied and pasted onto another part, thereby concealing the image content in the latter region. Keypoint based copy-move forgery detection approaches extract image feature points and use local visual features, rather than image blocks, to identify duplicated regions. Keypoint based approaches exhibit remarkable performance with respect to computational cost, memory requirement, and robustness. But unfortunately, they usually do not work well if smooth background areas are used to hide small objects, as image keypoints cannot be extracted effectively from those areas. It is a challenging work to design a keypoint-based method for detecting forgeries involving small smooth regions. In this paper, we propose a new keypoint-based copy-move forgery detection for small smooth regions. Firstly, the original tampered image is segmented into nonoverlapping and irregular superpixels, and the superpixels are classified into smooth, texture and strong texture based on local information entropy. Secondly, the stable image keypoints are extracted from each superpixel, including smooth, texture and strong texture ones, by utilizing the superpixel content based adaptive feature points detector. Thirdly, the local visual features, namely exponent moments magnitudes, are constructed for each image keypoint, and the best bin first and reversed generalized 2 nearest-neighbor algorithm are utilized to find rapidly the matching image keypoints. Finally, the falsely matched image keypoints are removed by customizing the random sample consensus, and the duplicated regions are localized by using zero mean normalized cross-correlation measure. Extensive experimental results show that the newly proposed scheme can achieve much better detection results for copy-move forgery images under various challenging conditions, such as geometric transforms, JPEG compression, and additive white Gaussian noise, compared with the existing state-of-the-art copy-move forgery detection methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.