Abstract
The paper presents a new Kernel-based monitoring algorithm compared with statistical process control methods, such as DISSIM and MS-PCA and some others methods widely used in process control applications. The proposed algorithm is a modified version of the well known support vector domain description (SVDD). The last one is commonly used for one-classification problems, named also novelty detection. In this paper, we have used a modified SVDD endowed with useful tools to manage multi-classification problems. The proposed classifier is also able to deal with stationary as well as non-stationary data. The principle is based on the dynamic update of the training set through a recursive deletion/insertion procedure according to adequate rules. In order to reduce the computational complexity and improve the rapidity of convergence, the algorithm considers in each run a limited frame of samples for the training process. To prove its effectiveness, the approach is assessed at first on artificially generated data. Then, we have performed a case study applied on chemical process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.