Abstract

Quantitative structure–activity relationship (QSAR) models are extensively used to identify new chemicals affecting human health and speed up the drug discovery process. The development of accurate QSAR models can lead to a reduced number of experiments conducted on rats and mice to analyze new compounds. In a typical QSAR model, only the relationship among variables is considered, and the probability distribution of the samples is disregarded. Thus, a new kernel function of support vector regression (SVR) that integrates probability distribution is proposed. The proposed kernel function, called SVR-pk, satisfies kernel function theory, and the mean and variance of the sample are used to reflect the main distribution information. To verify the performance of the new kernel function, simulation example, two sets of data from UCI (University of California, Irvine) and two experiments about the compounds toxicity in rodents data obtained from the Carcinogenic Potency Database are employed. Results show that compared with other SVR models utilizing kernel functions, SVR-pk exhibits better performance and is more suitable for QSAR model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.