Abstract

Virtual Oscillator Control (VOC) is an advanced nonlinear grid-forming controller used for power electronics interfaced distributed generation (DG). In order to improve the reliability of voltage source converter connecting to the disturbance grid, a feedback method with enhanced virtual impedance had been inserted into the control loop of the VOC-based inverter to suppress grid-injected harmonic currents. In this paper, a new grid-injected harmonic current suppression strategy with estimated voltage feedforward is proposed for a VOC-based voltage source inverter (VSI) connected to the distorted electrical grid. To achieve the control target, the Kalman-Filter is adopted to estimate the harmonic components of the grid voltage at the point of common coupling (PCC) and insert them to the feedforward control loop of the VOC-based inverter. Compared with the traditional VOC with enhanced virtual impedance method, the proposed control strategy has a slightly better ability to suppress the grid-injected harmonic current. A 3 kW/3-phase/120 V experimental prototype system designed on the DSPACE DS1202 platform has been developed to verify the effectiveness of the proposed control strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.