Abstract

Training a stroke gesture classifier by using the state-of-the-art Convolutional Neural Network method requires a large sample size to achieve good performance. This becomes a serious problem when users want to add new gestures to the system because adding so many samples is time-consuming and expensive. In this paper, we propose an iterative synthetic data generation method to solve this problem. The method takes in one user-input template gesture which is modeled by Bezier curve and can generate thousands of samples for training. We propose two different modeling approaches so the method can be applied to both mono and multi-stroke gestures. By applying perturbation to the control points, we can obtain enough samples for training. The generation process is carried out in an iterative way, so the variability in different categories of stroke gestures can be balanced. The variability is measured by the dynamic time wrapping method. The proposed method is tested on our own dataset and two published datasets. Our method outperforms methods with fixed generation process and reaches high recognition accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.