Abstract
This article presents a new iterative method (NIM) for the investigation of the approximate solution of the Klein-Gordon and sine-Gordon equations. This approach is formulated on the combination of the Mohand transform and the homotopy perturbation method. Mohand transform (MT) is capable to handle the linear terms only, thus we introduce homotopy perturbation method (HPM) to tackle the nonlinear terms. This NIM derives the results in the form of a series solution. The proposed method emphasizes the stability of the derived solutions without any linearization, discretization, or hypothesis. Graphical representation and absolute error demonstrate the efficiency and authenticity of this scheme. Some numerical models are illustrated to show the compactness and reliability of this strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.