Abstract
In this article, we propose a faster iterative scheme, called the AH iterative scheme, for approximating fixed points of contractive-like mappings and Reich–Suzuki-type nonexpansive mappings. We show that the AH iterative scheme converges faster than a number of existing iterative schemes for contractive-like mappings. The w^{2}-stability result of the new iterative scheme is established and a supportive example is provided to illustrate the notion of w^{2}-stability. Then, we prove weak and several strong convergence results of our new iterative scheme for fixed points of Reich–Suzuki-type nonexpansive mappings. Further, we carry out a numerical experiment to illustrate the efficiency of our new iterative scheme. As an application, we use our main result to prove the existence of a solution of a mixed-type nonlinear integral equation. An illustrative example to validate the result in our application is also given. Our results extend and generalize several related results in the existing literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.