Abstract

A new easily-accessible solution-processed oligomer, with an isoindigo group as an electron acceptor and a thieno[3,2-b]thiophene flanked by thiophenes as electron donors, has been synthesized by a Stille coupling reaction. Through introducing the extended pi-conjugated groups into isoindigo, the electro-optical properties of the material can be fine-tuned. The isoindigo oligomer has a broad absorption in the region from 300 to 800 nm with a narrow bandgap (1.54 eV), which is believed to be an ideal bandgap as donor materials. The oligomer possesses low HOMO energy level (-5.39 eV). The potential of optical and electronic properties encouraged us to explore the photovoltaic performance using the oligomer as the donor material in bulk heterojunction organic solar cell along with 6,6-phenyl-C61-butyric acid methyl ester as the acceptor. The solar cell based on the oligomer with an inverted device configuration provided a power conversion efficiency of 1.41% under the AM 1.5G illumination with an intensity of 100 mW cm(-2) from a solar simulator. (C) 2013 Elsevier Ltd. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call