Abstract
The stability of an almost inviscid compressible fluid flowing over a rigid heated surface is considered. We focus on the boundary layer that arises. The effect of surface heating is known to induce a streamwise acceleration in the boundary layer near the surface. This manifests in a streamwise velocity which exhibits a maximum larger than the free-stream velocity (i.e. the streamwise velocity exhibits an ‘overshoot’ region). We explore the impact of this overshoot on the stability of the boundary layer, demonstrating that the compressible form of the classical Rayleigh equation (which governs the development of short wavelength instabilities) possesses a new unstable mode that is a direct consequence of this overshoot. The structure of this new class of modes in the small wavenumber limit is detailed, providing a valuable confirmation of our numerical results obtained from the full inviscid eigenvalue problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.