Abstract
A graph is called intrinsically knotted if every embedding of the graph contains a knotted cycle. Johnson, Kidwell, and Michael showed that intrinsically knotted graphs have at least 21 edges. Recently Lee, Kim, Lee and Oh (and, independently, Barsotti and Mattman) proved there are exactly 14 intrinsically knotted graphs with 21 edges by showing that H12 and C14 are the only triangle-free intrinsically knotted graphs of size 21. Our current goal is to find the complete set of intrinsically knotted graphs with 22 edges. To this end, using the main argument in [9], we seek triangle-free intrinsically knotted graphs. In this paper we present a new intrinsically knotted graph with 22 edges, called M11. We also show that there are exactly three triangle-free intrinsically knotted graphs of size 22 among graphs having at least two vertices with degree 5: cousins 94 and 110 of the E9+e family, and M11. Furthermore, there is no triangle-free intrinsically knotted graph with 22 edges that has a vertex with degree larger than 5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.