Abstract

We propose to analyse power law shear stress relaxation modulus observed at the sol–gel transition (SGT) in many gelling systems in terms of fractional calculus. We show that the critical gel (gel at SGT) can be associated to a single fractional element and the gel in the post-SGT state to a fractional Kelvin–Voigt model. In this case, it is possible to give a physical interpretation to the fractional derivative order. It is associated to the power law exponent of the shear modulus related to the fractal dimension of the critical gel. A preliminary experimental application to silica alkoxide-based systems is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.