Abstract

We develop a new Lagrangian approach — flow dynamic approach to effectively capture the interface in the Allen-Cahn type equations. The underlying principle of this approach is the Energetic Variational Approach (EnVarA), motivated by Rayleigh and Onsager [27,28]. Its main advantage, comparing with numerical methods in Eulerian coordinates, is that thin interfaces can be effectively captured with few points in the Lagrangian coordinate. We concentrate in the one-dimensional case and construct numerical schemes for the trajectory equation in Lagrangian coordinate that obey the variational structures, and as a consequence, are energy dissipative. Ample numerical results are provided to show that only fewer points are enough to resolve very thin interfaces by using our flow dynamic approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call