Abstract

In recent time, Runge-Kutta methods that integrate special third order ordinary differential equations (ODEs) directly are proposed to address efficiency issues associated with classical Runge-Kutta methods. Albeit, the methods require evaluation of three set of equations to proceed with the numerical integration. In this paper, we propose a class of multistep-like Runge-Kutta methods (hybrid methods), which integrates special third order ODEs directly. The method is completely derivative-free. Algebraic order conditions of the method are derived. Using the order conditions, a four-stage method is presented. Numerical experiment is conducted on some test problems. The method is also applied to a practical problem in Physics and engineering to ascertain its validity. Results from the experiment show that the new method is more accurate and efficient than the classical Runge-Kutta methods and a class of direct Runge-Kutta methods recently designed for special third order ODEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.