Abstract

Tetracycline resistance in streptococci is mainly due to ribosomal protection mediated by the tet(M) gene that is usually located in the integrative and conjugative elements (ICEs) of the Tn916-family. In this study, we analyzed the genes involved in tetracycline resistance and the associated mobile genetic elements (MGEs) in Streptococcus dysgalactiae subsp. equisimilis (SDSE) causing invasive disease. SDSE resistant to tetracycline collected from 2012 to 2019 in a single hospital and from 2018 in three other hospitals were analyzed by whole genome sequencing. Out of a total of 84 SDSE isolates, 24 (28.5%) were resistant to tetracycline due to the presence of tet(M) (n = 22), tet(W) (n = 1), or tet(L) plus tet(W) (n = 1). The tet(M) genes were found in the ICEs of the Tn916-family (n = 10) and in a new integrative and mobilizable element (IME; n = 12). Phylogenetic analysis showed a higher genetic diversity among the strains carrying Tn916 than those having the new IME, which were closely related, and all belonged to CC15. In conclusion, tetracycline resistance in SDSE is mostly due to the tet(M) gene associated with ICEs belonging to the Tn916-family and a new IME. This new IME is a major cause of tetracycline resistance in invasive Streptococcus dysgalactiae subsp. equisimilis in our settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.