Abstract

The transient hot-wire technique is at present the best technique for obtaining standard reference data for the thermal conductivity of fluids. It is an absolute technique, with a working equation and a complete set of corrections reflecting departures from the ideal model, where the principal variables are measured with a high degree of accuracy. It is possible to evaluate the uncertainty of the experimental thermal conductivity data obtained using the best metrological recommendations. The liquids proposed by IUPAC (toluene, benzene, and water) as primary standards were measured with this technique with an uncertainty of 1% or better (95% confidence level). Pure gases and gaseous mixtures were also extensively studied. It is the purpose of this paper to report on a new instrument, developed in Lisbon, for the measurement of the thermal conductivity of gases and liquids, covering temperature and pressure ranges that contain the near-critical region. The performance of the instrument for pressures up to 15MPa was tested with gaseous argon, and measurements on dry air (Synthetic gas mixture, with molar composition certified by Linde AG, Wiesbaden, Germany, Ar - 0.00920; O 2 - 0.20966; N 2 -0.78114), from room temperature to 473 K and pressures up to 10 MPa are also reported. The estimated uncertainty is 1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.