Abstract

The new ichnospecies Paleohelcura araraquarensis isp. nov. is described from the Upper Jurassic-Lower Cretaceous Botucatu Formation of Brazil. This formation records a gigantic eolian sand sea (erg), formed under an arid climate in the south-central part of Gondwana. This trackway is composed of two track rows, whose internal width is less than one-quarter of the external width, with alternating to staggered series, consisting of three elliptical tracks that can vary from slightly elongated to tapered or circular. The trackways were found in yellowish/reddish sandstone in a quarry in the Araraquara municipality, São Paulo State. Comparisons with neoichnological studies and morphological inferences indicate that the producer of Paleohelcura araraquarensis isp. nov. was most likely a pterygote insect, and so could have fulfilled one of the ecological roles that different species of this group are capable of performing in dune deserts. The producer could have had a herbivorous or carnivorous diet or been part of the fauna of omnivores, being able to adopt herbivorous, carnivorous, and saprophagous diets when necessary. In modern dune deserts, some species of pterygote insects are detritivores (like Tenebrionidae), relying on organic matter that accumulated among the sand grains of the dunes during dry periods with no plant growth. The presence of additional burrows suggests that the Botucatu paleodesert would have had a detritivorous fauna like this. Based on the interpretation of the ichnofossil producers, it was possible to reconstruct the food web of this paleodesert. All the omnivorous and herbivorous invertebrates and the herbivorous ornithopod dinosaurs made up the primary consumers. These animals were, in turn, the food source for bigger carnivorous or omnivorous animals unable to feed on detritus, like arachnids, possible predatory insects, mammaliaforms, and theropod dinosaurs. The highest trophic level was occupied by larger theropod dinosaurs and mammaliaforms, which, because of their size, could prey upon a wide range of animals. The producer of Paleohelcura araraquarensis isp. nov. could have been a primary consumer if it were an omnivorous detritivore or a herbivore, or a secondary consumer if it were produced by a predatory insect or an omnivore relying on animal biomass. The description of this new trackway expands the knowledge on the faunal composition of the Botucatu paleodesert and provides insights into the ecological relationships in ancient deserts. The presence of these arthropod trackways in Mesozoic eolian deposits helps to trace a continuity between Paleozoic and post-Paleozoic desert ichnofaunas, further reinforcing a single Octopodichnus—Entradichnus Ichnofacies for eolian deposits.

Highlights

  • The Botucatu Formation, a stratigraphic unit of the Paraná Basin, is the testament of a gigantic sand desert that existed from the Late Jurassic to the Early Cretaceous in the south-central part of the supercontinent Gondwana, totaling an area of 1.5 × 106 km2, encompassing parts of Brazil, Argentina, Uruguay, Paraguay, Namibia and South Africa (Scherer & Goldberg, 2007)

  • Series within Lithographus and P. araraquarensis isp. nov. share two usually smaller tracks that are grouped anteriorly and commonly more externally, and a longer track that is positioned more posteriorly and internally. We suggest that this characteristic may reflect the pterygote insect leg arrangement

  • Despite being included in Paleohelcura, an ichnogenus usually attributed to arachnids, Paleohelcura araraquarensis isp. nov. was most likely produced by a pterygote insect on the basis of neoichnological observations

Read more

Summary

Introduction

The Botucatu Formation, a stratigraphic unit of the Paraná Basin, is the testament of a gigantic sand desert (erg ) that existed from the Late Jurassic to the Early Cretaceous in the south-central part of the supercontinent Gondwana, totaling an area of 1.5 × 106 km, encompassing parts of Brazil, Argentina, Uruguay, Paraguay, Namibia and South Africa (Scherer & Goldberg, 2007). Trace fossils play a central role in understanding animal diversity and ecological relationships in this ancient erg. Eolian deposits have been traditionally considered of minor interest from an ichnologic perspective. Eolian deposits have been traditionally considered of minor interest from an ichnologic perspective This situation has changed at an accelerated rate in recent years with the publication of several papers on the topic (e.g., Ekdale, Bromley & Loope, 2007; Ekdale & Bromley, 2012; Good & Ekdale, 2014; Krapovickas et al, 2016; Carmona, Ponce & Wetzel, 2018; Xing et al, 2018; Buatois & Echevarría, 2019; Marchetti et al, 2019a; Marchetti et al, 2019b). Documentation of trace fossils in desert successions is of paramount importance to provide support to these models, and to help clarify the diagnostic characteristics of the so-called Octopodichnus-Entradichnus Ichnofacies

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call