Abstract
The development of injectable cement-like biomaterials via a minimally invasive approach has always attracted considerable clinical interest for modern bone regeneration and repair. Although α-tricalcium phosphate (α-TCP) powders may readily react with water to form hydraulic calcium-deficient hydroxyapatite (CDHA) cement, its long setting time, poor anti-collapse properties, and low biodegradability are suboptimal for a variety of clinical applications. This study aimed to develop new injectable α-TCP-based bone cements via strontium doping, α-calcium sulfate hemihydrate (CSH) addition and liquid phase optimization. A combination of citric acid and chitosan was identified to facilitate the injectable and anti-washout properties, enabling higher resistance to structure collapse. Furthermore, CSH addition (5%-15%) was favorable for shortening the setting time (5-20min) and maintaining the compressive strength (10-14MPa) during incubation in an aqueous buffer medium. These α-TCP-based composites could also accelerate the biodegradation rate and new bone regeneration in rabbit lateral femoral bone defect models in vivo. Our studies demonstrate that foreign ion doping, secondary phase addition and liquid medium optimization could synergistically improve the physicochemical properties and biological performance of α-TCP-based bone cements, which will be promising biomaterials for repairing bone defects in situations of trauma and diseased bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.