Abstract

The white noise deconvolution or input white noise estimation problem has important applications in oil seismic exploration, communication and signal processing. By the modern time series analysis method, based on the autoregressive moving average (ARMA) innovation model, a new information fusion white noise deconvolution estimator is presented for the general multisensor systems with different local dynamic models and correlated noises. It can handle the input white noise fused filtering, prediction and smoothing problems, and it is applicable to systems with colored measurement noises. It is locally optimal, and is globally suboptimal. The accuracy of the fuser is higher than that of each local white noise estimator. In order to compute the optimal weights, the formula computing the local estimation error cross-covariances is given. A Monte Carlo simulation example for the system with Bernoulli-Gaussian input white noise shows the effectiveness and performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.