Abstract
In this paper, an inductive proximity sensor with a longer range when compared to its diameter is presented. This sensor is intended to guide doctors, while performing surgery to remove metal shrapnel from victims of bomb blasts, gun fire, land mines etc. Presently doctors rely on imaging systems to locate shrapnel in the victim's body before surgery. Effectiveness of surgery and recovery solely depends on the doctors' skill to trace the shrapnel. In some cases the shrapnel may be visible in the images, but it may be untraceable during surgery. So in such cases, an inductive proximity sensor which is small enough to be introduced into the victim's body and can direct the recovery tool effectively to the exact location of the shrapnel, during the surgery, will be very useful to the doctor. Such a sensor, along with its details and experimental results are presented in this paper. This sensor works on a new comparison based method to detect tiny targets, as the detector size is a constraint here. The sensor can detect shrapnel materials such as steel, brass and Aluminium. A smaller, modified version of this sensor is also presented in the paper, along with a study of the effect of body tissues on sensor performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.