Abstract

Abstract Discs of bodies orbiting a much more massive central object are extremely common in astrophysics. When the orbits comprising such discs are eccentric, we show they are susceptible to a new dynamical instability. Gravitational forces between bodies in the disc drive exponential growth of their orbital inclinations and clustering in their angles of pericentre, expanding an initially thin disc into a conical shape by giving each orbit an identical ‘tilt’ with respect to the disc plane. This new instability dynamically produces the unusual distribution of orbits observed for minor planets beyond Neptune, suggesting that the instability has shaped the outer Solar system. It also implies a large disc mass (∼ 1–10 Earth masses) of scattered bodies at hundreds of au; we predict increasing numbers of detections of minor planets clustered in their angles of pericentre with high inclinations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.