Abstract

Although electrosurgical instruments are widely used in surgery to cut tissue layers or to achieve hemostasis by coagulation (electrocautery), only little information is available concerning the inflammatory or immune response towards the debris generated. Given the elevated local temperatures required for successful electrocautery, the remaining debris is likely to contain a plethora of compounds entirely novel to the intracorporal setting. A very common in vitro method to study cell migration after mechanical damage is the scratch assay, however, there is no established model for thermomechanical damage to characterise cellular reactions. In this study, we established a new in vitro model to investigate exposure to high temperature in a carefully controlled cell culture system. Heatable thermostat-controlled aluminium stamps were developed to induce local damage in primary human umbilical vein endothelial cells (HUVEC). The thermomechanical damage invoked is reproducibly locally confined, therefore allowing studies, under the same experimental conditions, of cells affected to various degrees as well as of unaffected cells. We show that the unaffected cells surrounding the thermomechanical damage zone are able to migrate into the damaged area, resulting in a complete closure of the ‘wound’ within 48 h. Initial studies have shown that there are significant morphological and biological differences in endothelial cells after thermomechanical damage compared to the mechanical damage inflicted by using the unheated stamp as a control. Accordingly, after thermomechanical damage, cell death as well as cell protection programs were activated. Mononuclear cells adhered in the area adjacent to thermomechanical damage, but not to the zone of mechanical damage. Therefore, our model can help to understand the differences in wound healing during the early phase of regeneration after thermomechanical vs. mechanical damage. Furthermore, this model lends itself to study the response of other cells, thus broadening the range of thermal injuries that can be analysed.

Highlights

  • Since the middle of the last century, electrosurgery has become routine in open and minimal invasive surgeries: it is used to achieve division of tissue [1], and has most recently been employed for more advanced applications such as blood vessel sealing and hemostasis [2,3,4,5]

  • Human umbilical vein endothelial cells (HUVEC) are widely employed for analysis of wound healing and inflammation in vitro, and we chose these cells for our investigation

  • The model described in this article is characterised by the highly reproducible formation of locally confined damage zones, in which the thermomechanical damage inflicted elicits a cellular resoponse that results in the adhesion of mononuclear cells without additional administration of cytokines

Read more

Summary

Introduction

Since the middle of the last century, electrosurgery has become routine in open and minimal invasive surgeries: it is used to achieve division of tissue [1], and has most recently been employed for more advanced applications such as blood vessel sealing and hemostasis [2,3,4,5]. The model described in this article is characterised by the highly reproducible formation of locally confined damage zones, in which the thermomechanical damage inflicted elicits a cellular resoponse that results in the adhesion of mononuclear cells without additional administration of cytokines This model is suitable to investigate modulators of the initial steps of wound healing after thermal damage

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.