Abstract

Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture media (in vitro), after which they were subjected to mechanical analysis by tensile testing. Wires corroded in vivo showed reductions in strength, elongation, and the work of fracture, with additional qualitative changes between tensile profiles. The in vivo degradation was 2.2±0.5, 3.1±0.8, and 2.3±0.3 times slower than corrosion in vitro in terms of effective tensile strength, strain to failure, and sample lifetime, respectively. Also, a combined metric, defined as strength multiplied by elongation, was 3.1±0.7 times faster in vitro than in vivo. Consideration of the utility and restrictions of each metric indicates that the lifetime-based multiplier is the best suited to general use for magnesium, though other metrics could be used to deduce the mechanical properties of degradable implants in service.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.