Abstract

Optimum scheduling of hydrothermal plants is an important task for economic operation of power systems. Many evolutionary techniques such as particle swarm optimization, differential evolution have been applied to solve these problems and found to perform in a better way in comparison with conventional optimization methods. But often these methods converge to a sub-optimal solution prematurely. This paper presents a new improved particle swarm optimization technique called self-organizing hierarchical particle swarm optimization technique with time-varying acceleration coefficients (SOHPSO_TVAC) for solving daily economic generation scheduling of hydrothermal systems to avoid premature convergence. The performance of the proposed method is demonstrated on a sample test system comprising of cascaded reservoirs. The results obtained by the proposed methods are compared with other methods. The results show that the proposed technique is capable of producing comparable results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.