Abstract
Intelligent optimization algorithms have now become important means for solving global optimization problems. The imperialist competitive algorithm (ICA) is a nature-inspired meta-heuristic algorithm that imitates social behavior. ICA has been widely used in optimization problems, however, ICA tends to fall into a local optimal solution because of its fast convergence speed, which may lead to premature convergence when solving optimization problems. To solve these problems, a new improved ICA algorithm is proposed. Based on the original ICA algorithm, the theory of spiral rising is introduced to enlarge the search space and enhance the global search ability of the algorithm based on ensuring the necessary speed of convergence. In this paper, the improved optimization algorithm is applied to 19 classical benchmark functions, and the improved ICA is applied to the robot path optimization problems to solve the optimal path. The improved ICA algorithm improves the optimization ability and algorithm stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.