Abstract
该文提出了一种新的结合非下采样Contourlet变换(NSCT)和自适应全变差模型的图像去噪方法。首先通过NSCT对含噪图像进行分解,根据高斯比例混合(GSM)模型建立图像模型;然后利用贝叶斯估计进行图像去噪,重构后得到初次去噪图像;最后,结合自适应全变差模型对初次去噪图像进行重构滤波,得到最终的去噪图像。实验结果表明,该方法可以有效地消除图像中的Gibbs伪影及噪声,在去噪图像峰值信噪比(PSNR)和边缘保持性能上都优于已有的算法。
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JOURNAL OF ELECTRONICS INFORMATION & TECHNOLOGY
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.