Abstract
IEEE 802.11 defines distributed coordination function (DCF), which is characterized by CSMA/CA and binary exponential backoff (BEB) algorithm. Most modifications on DCF so far have focused on updating of the contention window (CW) size depending on the outcome of own frame transmission without considering freezing periods experienced in the backoff interval. We propose two simple but novel schemes which effectively utilize the number of freezing periods sensed during the current backoff interval. The proposed schemes can be applied to DCF and its family, such as double increment double decrement (DIDD). Saturation throughput of the proposed schemes is analyzed by means of Bianchi's Markovian model. Computer simulation validates the accuracy of the analysis. Numerical results based on IEEE 802.11b show that up to about 20% improvement of saturation throughput can be achieved by combining the proposed scheme with conventional schemes when applied to the basic access procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.