Abstract

Magnesium alloy waste dust particles will be generated during alloy grinding, which undergoes a hydrogen production reaction in wet dust removal systems and introduces the risk of hydrogen explosion. The inhibition of hydrogen evolution from waste ZK61 alloy dust by decyl glucoside (DG) and sodium tungstate (ST) in simulated industrial water was studied. The adsorption of a single inhibitor on ZK61 alloy dust exhibited inefficient inhibition. However, when DG and ST were combined, they synergistically inhibited hydrogen evolution, and the sustained-release rate reached 91.6%. The SEM, XRD, FT-IR and XPS results showed that a dense protective film composed of [DG-Mg] and MgWO4 formed on the surface of the ZK61 particles. This film resulted from the synergistic inhibition of hydrogen evolution from ZK61 dust particles by DG and ST.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call