Abstract
In this article, a new hypervolume-based evolutionary multiobjective optimization algorithm (EMOA), namely, R2HCA-EMOA (R2-based hypervolume contribution approximation EMOA), is proposed for many-objective optimization. The core idea of the algorithm is to use an R2 indicator variant to approximate the hypervolume contribution. The basic framework of the proposed algorithm is the same as SMS-EMOA. In order to make the algorithm computationally efficient, a utility tensor structure is introduced for the calculation of the R2 indicator variant. Moreover, a normalization mechanism is incorporated into R2HCA-EMOA to enhance the performance of the algorithm. Through experimental studies, R2HCA-EMOA is compared with three hypervolume-based EMOAs and several other state-of-the-art EMOAs on 5-, 10-, and 15-objective DTLZ, WFG problems, and their minus versions. Our results show that R2HCA-EMOA is more efficient than the other hypervolume-based EMOAs, and is superior to all the compared state-of-the-art EMOAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.