Abstract

In order to improve traditional hypersonic wind tunnel airframe/propulsion integrated aerodynamic testing technology for hypersonic vehicles, a new force measurement system called the aerodynamic force measuring support (AFMS) was designed. The AFMS effectively overcomes the defect that the traditional internal box-balance occupies a large amount of internal space in the aircraft test model, which makes the airframe/propulsion integrated aerodynamic test more difficult. The AFMS also alleviates the interference of the additional bending moment caused by the non-coincidence between the calibration center of traditional external box-balance and the gravity center of the aircraft test model, innovatively designing a convex structure in the joint part of the force measuring system. Furthermore, the AFMS effectively overcomes the time-varying stiffness of joints caused by test model vibration in hypersonic wind tunnel testing, which eventually leads to test errors. Compared with the traditional box-balance, the AFMS proposed in this study has sufficient design space. This ensures more thorough aerodynamic decomposition of the AFMS and less interference between channels, whilst also having the advantages of the large support stiffness of traditional box-balance. Thus, the AFMS provides a new technical path for airframe/propulsion integrated aerodynamic testing of air-breathing hypersonic vehicles in a hypersonic wind tunnel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call