Abstract

This paper formulates a new hyperchaotic system for particle motion. The continuous dependence on initial conditions of the system’s solution and the equilibrium stability, bifurcation, energy function of the system are analyzed. The hyperchaotic behaviors in the motion of the particle on a horizontal smooth plane are also investigated. It shows that the rich dynamic behaviors of the system, including the degenerate Hopf bifurcations and nondegenerate Hopf bifurcations at multiple equilibrium points, the irregular variation of Hamiltonian energy, and the hyperchaotic attractors. These results generalize and improve some known results about the particle motion system. Furthermore, the constraint of hyperchaos control is obtained by applying Lagrange’s method and the constraint change the system from a hyperchaotic state to asymptotically state. The numerical simulations are carried out to verify theoretical analyses and to exhibit the rich hyperchaotic behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.