Abstract
The screening of new effective metal hyperaccumulators is essential for the development of profitable phytoremediation projects in highly degraded environments such as mining areas. The goal of this research was to analyze the phytoextraction potential of the native plant Spergularia rubra to decontaminate and eventually recover metals (phytomining) from the mine tailings (belonging to an abandoned Pb/Zn Spanish mine) in which it grows spontaneously. To do so, the ability of this plant species to accumulate metals was evaluated both under natural conditions and through simple and electrokinetically assisted phytoextraction tests using alternating current and different combinations of voltage gradient (1/2 V cm−1) and application time (6/12 h per day). The complete duration of the greenhouse trial was 64 days, although alternating current was applied only during the last 14 days. The results obtained demonstrated the exceptional effectiveness of S. rubra for metal hyperaccumulation and growth without affecting toxicity in highly contaminated mining waste. Zn was the metal accumulated to a higher extent in the shoots, reaching concentrations up to 17,800 mg kg−1; Pb was mainly accumulated in the roots reaching a maximum concentration of 8709 mg kg−1. Cu and Cd were accumulated to a lesser extent but the bioconcentration factors were much >1. It has been proved that S. rubra is a hyperaccumulator species for Zn and Cd both in natural and greenhouse conditions and, very probably, Pb in wild conditions. The application of AC current did not significantly increase metal concentrations in plant tissues but it was able to increase the aerial biomass of S. rubra by 49.8 %. As a result, the phytoextraction yields of all metals were significantly improved as compared to wild conditions (up to 86 % for Zn). It could open new expectations about the economic viability of recovering high-value metals from mine tailings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.