Abstract

This paper proposes a new hybrid uncertain design optimization method for structures which contain both random and interval variables simultaneously. The optimization model is formulated with the feasible robustness and the reliability of the worst scenario. The hybrid uncertainty is quantified by using the orthogonal series expansion method that integrates the Polynomial Chaos (PC) expansion method and the Chebyshev interval method within a uniform framework. The design sensitivity of objective and constraints will be developed to greatly facilitate the use of gradient-based optimization algorithms. The numerical results show that this method will be more possible to seek the feasible solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.