Abstract

In general, customers are looking to receive their orders in the fastest time possible and to make purchases at a reasonable price. Consequently, the importance of having an optimal delivery time is increasingly evident these days. One of the structures that can meet the demand for large supply chains with numerous orders is the hierarchical integrated hub structure. Such a structure improves efficiency and reduces chain costs. To make logistics more cost-effective, hub-and-spoke networks are necessary as a means to achieve economies of scale. Many hub network design models only consider hub type but do not take into account the hub scale measured using freight volume. This paper proposes a multi-objective scheduling model for hierarchical hub structures (HHS), which is layered from top to bottom. In the third layer, the central hub takes factory products from decentralized hubs and sends them to other decentralized hubs to which customers are connected. In the second layer, non-central hubs are responsible for receiving products from the factory and transferring them to central hubs. These hubs are also responsible for receiving products from central hubs and sending them to customers. Lastly, the first layer contains factories responsible for producing products and providing for their customers. The factory uses the flexible flow-shop platform and structure to produce its products. The model’s objective is to minimize transportation and production costs as well as product arrival times. To validate and evaluate the model, small instances have been solved and analyzed in detail with the weighted sum and ε-constraint method. Consequently, based on the mean ideal distance (MID) metric, two methods were compared for the designed instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.