Abstract

Maximum power point tracking (MPPT) is becoming more and more important in the optimization of photovoltaic systems. Several MPPT algorithms and nonlinear controllers have been developed for improving the energy yield of PV systems. On the one hand, most of the conventional algorithms such as the incremental conductance (INC) demonstrate a good affinity for the maximum power point (MPP) but often fail to ensure acceptable stability and robustness of the PV system against fast-changing operating conditions. On the other hand, the MPPT nonlinear controllers can palliate the robust limitations of the algorithms. However, most of these controllers rely on expensive solar irradiance measurement systems or complex and relatively less accurate methods to seek the maximum power voltage. In this paper, we propose a new hybrid MPPT based on the incremental conductance algorithm and the integral backstepping controller. The hybrid scheme exploits the benefits of the INC algorithm in seeking the maximum power voltage and feeds a nonlinear integral backstepping controller whose stability was ensured by the Lyapunov theory. Therefore, in terms of characteristics, the overall system is a blend of the MPP-seeking potential of the INC and the nonlinear and robust potentials of the integral backstepping controller (IBSC). It was noted that the hybrid system successfully palliates the conventional limitations of the isolated INC and relieves the PV system from the expensive burden of solar irradiance measurement. The proposed hybrid system increased the operational efficiency of the PV system to 99.94% and was found better than the INC MPPT algorithm and 8 other recently published MPPT methods. An extended validation under experimental environmental conditions showed that the hybrid system is approximately four times faster than the INC in tracking the maximum power with better energy yield than the latter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.