Abstract

In the dynamic realm of Automatic Voltage Regulation (AVR), the pursuit of robust transient response, adaptability, and stability drives researchers to explore novel avenues. This study introduces a groundbreaking approach—the Hybrid Intelligent Fractional Order Proportional Derivative2+Integral (FOPDD+I) controller—leveraging the power of the Adaptive Neuro-Fuzzy Inference System (ANFIS). The novelty lies in the comparative analysis of three scenarios: the AVR system without a controller, with a traditional PID controller, and with the proposed FOPDD+I-based ANFIS. By fusing ANFIS with a hybrid controller, we forge a unique path toward optimized AVR performance. The hybrid controller, based on FOPID (Fractional Order Proportional Integral Derivative) principles, synergizes individual integral factors with ANFIS, augmenting them with a doubled derivative factor. The ANFIS design employs a hybrid optimization learning scheme to fine-tune the Fuzzy Inference System (FIS) parameters governing the AVR system. To train the fuzzy inference system, we utilize a Proportional-Integral-Derivative (PID) simulation of the entire AVR system, capturing essential data over approximately seven seconds. Our simulations, conducted in MATLAB/Simulink, reveal impressive performance metrics for the FOPDD+I-ANFIS approach: Rise time: 1.1162 seconds, settling time: 0.5531 seconds, Overshoot: 0%, Steady-state error: 0.00272, These results position our novel approach favorably against existing works, underscoring the transformative potential of intelligent creation in AVR control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.