Abstract

The Grasshopper optimization algorithm showed a rapid converge in the initial phases of the global search, however while being around the global optimum, the searching process became so slow. On the contrary, the gradient descending method around achieved faster convergent speed global optimum, and the convergent accuracy was showed to be higher at the same time. As a result, the proposed hybrid algorithm combined Grasshopper optimization algorithm (GOA) along with the back-propagation (BP) algorithm, also referred to as GOA–BP algorithm, was introduced to provide training to the weights of the feed forward neural network (FNN), the proposed hybrid algorithm can utilize the strong global searching ability of the GOA, and the intense local searching ability of the Back-Propagation algorithm. The results of experiments showed that the proposed hybrid GOA–BP algorithm was better and faster in convergent speed and accuracy than the Grasshopper optimization algorithm (GOA) and BP algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.