Abstract

This study aims to introduce a novel hybrid design with a combination of two more common mechanisms for improving the capacity of systems in absorbing the kinetic energy of moving vehicles or devices. This new model consists of two individual mechanisms, i.e., expansion of a circular tube accompanied by crushing of an inner tube, which dissipate the energy through friction, plastic deformations and failures of inner tube. This study comprises 24 case studies surveyed under two different design controls, constant mass and constant volume, for comparing purposes. Finite element simulations are utilized so as to investigate models’ deformations and to extract some crashworthiness parameters in aid of representing the efficiency of the mechanism as well as conducting a parametric study between three different profiles of inner tube. This study shows that models with inner circular and hexagonal tube profile absorb higher amount of energy due to experiencing three different modes of energy dissipation systems, including folding, shear and ductile damages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.