Abstract
In the recent years, more and more researches are preferred to focus on network user behavior. Usually, k-means clustering and Agglomerative Nesting (AGNES) are respectively chosen to analyze the network user behavior. But both the two kinds of algorithm have some disadvantages inherently. A kind of hybrid clustering algorithm (ASAKM) is proposed in this paper, which takes the advantages of both kinds of clustering algorithms. Furthermore, the idea of simulated annealing is also adopted in this paper, to implement the global optimal solution while the partitioning methods usually only reach the local optimal minimum. Experiments indicate that, with this new hybrid algorithm, the clustering results can be more accurate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.