Abstract

HIV-1 Rev mediates the nuclear export of unspliced and partially-spliced viral transcripts for the production of progeny genomes and structural proteins. In this process, four (or more) copies of Rev assemble onto a highly-structured 351-nt region in such viral transcripts, the Rev response element (RRE). How this occurs is not known. The Rev assembly domain has a helical-hairpin structure which associates through three (A-A, B-B and C-C) interfaces. The RRE has the topology of an upper-case letter A, with the two known Rev binding sites mapping onto the legs of the A. We have determined a crystal structure for the Rev assembly domain at 2.25 Å resolution, without resort to either mutations or chaperones. It shows that B-B dimers adopt an arrangement reversed relative to that previously reported, and join through a C-C interface to form tetramers. The new subunit arrangement shows how four Rev molecules can assemble on the two sites on the RRE to form the specificity checkpoint, and how further copies add through A-A interactions. Residues at the C-C interface, specifically the Pro31-Trp45 axis, are a potential target for intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.