Abstract

This paper presents a novel architecture of an impedance spectrometer dedicated to the characterization and diagnostics of large fuel cell stacks operated in galvanostatic mode. The validation tests are first performed on a single proton exchange membrane fuel cell (PEMFC). Then, experiments are carried out on a 20-cell PEMFC stack delivering more significant power levels. The proposed impedancemeter allows spectrum measurements on cells located in the middle of the stack, where common mode potentials are usually too high for commercial devices. Moreover, the impedances of different individual cells in the stack are acquired with a synchronous measurement reference (global stack impedance). This capability allows distinguishing any singular cell behavior or drift effect of operational parameters (e.g., stack temperature and polarization current).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.