Abstract
BackgroundReports of severe cases and increasing levels of drug resistance highlight the importance of improved Plasmodium vivax case management. Whereas monitoring P. vivax resistance to anti-malarial drug by in vivo and in vitro tests remain challenging, molecular markers of resistance represent a valuable tool for high-scale analysis and surveillance studies. A new high-throughput assay for detecting the most relevant markers related to P. vivax drug resistance was developed and assessed on Papua New Guinea (PNG) patient isolates.MethodsPvdhfr, pvdhps and pvmdr1 fragments were amplified by multiplex nested PCR. Then, PCR products were processed through an LDR-FMA (ligase detection reaction - fluorescent microsphere assay). 23 SNPs, including pvdhfr 57-58-61 and 173, pvdhps 382-383, 553, 647 and pvmdr1 976, were simultaneously screened in 366 PNG P. vivax samples.ResultsGenotyping was successful in 95.4% of the samples for at least one gene. The coexistence of multiple distinct haplotypes in the parasite population necessitated the introduction of a computer-assisted approach to data analysis. Whereas 73.1% of patients were infected with at least one wild-type genotype at codons 57, 58 and 61 of pvdhfr, a triple mutant genotype was detected in 65.6% of the patients, often associated with the 117T mutation. Only one patient carried the 173L mutation. The mutant 647P pvdhps genotype allele was approaching genetic fixation (99.3%), whereas 35.1% of patients were infected with parasites carrying the pvmdr1 976F mutant allele.ConclusionsThe LDR-FMA described here allows a discriminant genotyping of resistance alleles in the pvdhfr, pvdhps, and pvmdr1 genes and can be used in large-scale surveillance studies.
Highlights
Reports of severe cases and increasing levels of drug resistance highlight the importance of improved Plasmodium vivax case management
The ligase detection reaction - fluorescent microsphere assay (LDR-FMA) described here allows a discriminant genotyping of resistance alleles in the pvdhfr, pvdhps, and pvmdr1 genes and can be used in large-scale surveillance studies
Plasmodium vivax infections were observed in 366 (52%) of 704 samples evaluated by Plasmodium species diagnosis with a post-PCR LDR-FMA [31]; 113 samples (30.9%) were co-infected with P. falciparum
Summary
Reports of severe cases and increasing levels of drug resistance highlight the importance of improved Plasmodium vivax case management. Whereas monitoring P. vivax resistance to anti-malarial drug by in vivo and in vitro tests remain challenging, molecular markers of resistance represent a valuable tool for high-scale analysis and surveillance studies. Monitoring in vivo drug resistance remains challenging due to the ability of P. vivax to relapse from longlasting liver stages. Genotyping of recurrent infections [17] makes it possible to distinguish infection by parasites with different genotypes (new infections) [18,19] from infection by parasites with identical genotypes (whether due to relapse or to recrudescence from blood-stage parasites that survived drug treatment) [20]. For P. vivax, these markers include mutations in genes encoding the dihydrofolate reductase (PvDHFR) and the dihydropteroate synthase (PvDHPS) that are involved in drug resistance to antifolates (pyrimethamine) [22], and sulphonamides (sulphadoxine) [23], respectively. The 976F mutation in the gene encoding the multidrug resistance 1 protein (PvMDR1), which has been associated with 4-aminoquinolines (amodiaquine, CQ) resistance in some [21,24] but not all studies [21,25]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.