Abstract

A novel design of piezoelectric ultrasonic transducer is introduced, suitable for operation at temperatures of up to 700 °C-800 °C. Lithium niobate single crystal is chosen as the piezoelectric element primarily due to the high Curie temperature of 1200 °C. A backing element based on a porous ceramic is designed for which the pore volume fraction and average pore diameter in the ceramic matrix can be controlled in the manufacturing process; this enables the acoustic impedance and attenuation to be selected to match their optimal values as predicted by a one-dimensional transducer model of the entire transducer. Porous zirconia is selected as the ceramic matrix material of the backing element to obtain an ultrasonic signal with center frequency of 2.7-3 MHz, and 3-dB bandwidth of 90%-95% at the targeted operating temperature. Acoustic coupling of the piezocrystal to the backing element and matching layer is investigated using commercially available high-temperature adhesives and brazing alloys. The performance of the transducer as a function of temperature is studied. Stable bonding and clear signals were obtained using an aluminum brazing alloy as the bonding agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call