Abstract

This paper presents a new high-frequency modulation method for multilevel converters. The proposed method provides a broad linear operating range and can be digitally implemented with minimal computational effort. This modulation method creates a phase voltage composed of a rectangular component superimposed on the top of a quasi-square-shaped reference function. The reference functions are defined such that the utilization of the dc-link voltage is maximized in any modulation index, while the dv/dt of the switches is always the minimum possible value. In order to implement the proposed method, an update time that is much shorter than the fundamental period is defined in the algorithm for updating the rectangular components of the reference voltage. The high-frequency rectangular component can then be imposed on the reference function to generate the final switching function by switching between two voltage levels during the time between two update instances. Several experimental results are provided to evaluate the performance of the proposed method and to compare its operation to conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.